
The Influence of System Properties on Software Assurance and Project Management 1
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

The Influence of System Properties on Software Assurance
and Project Management
Robert J. Ellison, Software Engineering Institute [vita3]

Copyright © 2006 Carnegie Mellon University

2006-02-06

Certain characteristics of software being developed and of the development environment influence how
software assurance should be managed. The scope and size of the system are obvious attributes to consider.
A large system is built by first decomposing it into pieces that are more easily managed. Project management
decisions often influence how that decomposition is done.

Development Context
Certain characteristics of software being developed and of the development environment influence
how software assurance should be managed. The scope and size of the system are obvious attributes
to consider. We build a large system by first decomposing it into pieces that are more easily managed.
Project management decisions often influence how we do that decomposition. A decomposition might be
constrained by a need to integrate legacy systems, a requirement to use commercial products, or a desire to
reduce costs by reusing available software. The challenge is to decompose the system in such a way that
those individual pieces can be individually built and that the composition of those components meets system
requirements.

Software assurance is strongly influenced by how we integrate components and by the knowledge and
control that we have with respect to the behavior of those components. We consider the consequences
for software assurance and project management as the development context moves from general-purpose
software such as commercial products to organization-specific applications and integrated systems and then
to system of systems that may span organizational boundaries.

General Guidance
Risk analysis should be threaded through the development process. A series of risk assessments provides a
measure of how well the previously identified risks have been addressed.

There should be a close tie between the risk analysis and requirements as risk analysis helps to define the
scope for security in terms of the threats to be considered, the responses desired, and the assurance levels
desired.

General Purpose Components and Commercial Products
The complexity associated with product development may be a consequence of tight component integration
to meet market demands for functionality or performance. Products typically have extensibility requirements
so that they can be tailored for a specific customer’s operating environment. The complexity induced by
those product requirements also raise the risk that those features could be exploited.

Cost reduction is a frequent business driver that encourages the development of software packages that are
used in multiple systems within an organization. Often cost reduction leads to sharing infrastructure services
among multiple applications.

While the size and scope of commercial products can be significantly larger than that for libraries of shared
business services, these two development contexts share traits that affect software assurance.

3. http://buildsecurityin.us-cert.gov/bsi/about_us/authors/208-BSI.html (Ellison, Robert J.)

http://buildsecurityin.us-cert.gov/bsi/about_us/authors/208-BSI.html

The Influence of System Properties on Software Assurance and Project Management 2
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

• The developer for commercial software typically can change any of the product software and has
detailed knowledge its structure. Shared business components are typically small, with the developer
having control over most aspects of their development.

• General-purpose business software can be used in applications with differing assurance requirements,
although such software is typically avoided for systems with high-assurance requirements. The
developer for a commercial product has limited or no knowledge of the criticality of the services that
may be implemented with that product, the business impact of a product failure, or the operational risks
associated with any specific usage.

Example
There is increasing interest in using service-oriented architectures (SOA) and Web Services to satisfy
the escalating integration requirements among distributed business systems. That approach raises several
software assurance issues for applications and systems. There are multiple definitions of SOA. This note
considers it as an architecture in which the business logic of the application is organized in modules
(services). Each module is a discrete service, and its internal design is independent of the nature and purpose
of the requester (i.e., loosely coupled). The objective is to develop reusable services (components) that can
be easily composed to implement multiple and frequently changing business work processes. The difficulty
of assuring the behavior of a large, tightly coupled application has been replaced by the difficulty of

• assuring not only a specific business service but also assuring those services as used in multiple
business processes with potentially differing performance, security, or reliability requirements. For
example, a business process may use stronger authentication methods or limit data access with a remote
business process when the process participants are not on a trusted network.

• assuring that those services can be composed to support complex and ever changing business processes

Selected Project Management Issues for Products and Shared Services
1. Code analysis, both manual and tool-based, can be applied to all software to find and correct many of

the vulnerabilities associated with coding.

2. Design reviews should reflect the breadth of potential usage. There should be sufficient access to all
component software to enable correcting the design or implementation faults identified.

3. Threat modeling and risk analysis should assume a spectrum of attacker profiles, from a novice using a
readily available attack kit to a sophisticated attacker with ample resources who can tailor an attack for
a specific system.

4. Shared services typically aggregate risks. A failure in shared software or infrastructure services could
affect multiple systems. The level of software assurance required for the shared components should
be higher than that required than for the systems in which they are deployed. The higher assurance
and aggregation of risks implies that the risks for shared services should include the full spectrum of
integrity, confidentiality, and availability issues.

Microsoft’s Trustworthy Computing Security Development Lifecycle provides a detailed description of their
experience for incorporating software assurance into development life cycle for software products [Lipner
05].

Products/Components to Applications/Integrated Systems
The difficulty of demonstrating software assurance is compounded by two problems as we move to
applications and integrated systems. Commercial products and shared components are used to build
applications and integrated systems. Compared to the original developer, the application or system developer
has limited knowledge of their internal structure and control of their behavior and cannot provide as strong
an assurance argument as that provided by the product developer. While the product developer should
demonstrate software assurance for a spectrum of uses, the system developer only has to demonstrate
assurance for how products or shared components are used in that system.

The Influence of System Properties on Software Assurance and Project Management 3
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

Component Assurance Issues
The section on requirements and scope included examples of medium and high assurance systems. Although
there are many studies on the problems raised by low assurance, medium assurance is more of a grey area in
terms of the development practices that should be used. Some will argue that we cannot compose a medium-
assurance system from low-assurance components, and that medium assurance has to be built in from the
start of development. Medium- and high-assurance requirements are often in conflict with other development
strategies such as the reuse of existing code to lower costs and shorten development time. Reuse can lead
to software being employed in an environment where it was not designed to be secure or to a combination
of components that were not designed to manage failure. The addition of extensibility mechanisms so that
a product can be customized for specific usage usually raises the security risks. Hence, medium- and high-
assurance systems may need to use more special purpose mechanisms than the more flexible and general-
purpose techniques that are used for low-assurance systems.

System Assurance Issues
There is frequently a tendency when considering system security to focus on the security of the components.
Unfortunately, the whole is not the sum of the parts. Security is an emergent system attribute and depends
on the collective behavior of the components. Although many security failures have been caused by a
component error, security vulnerabilities also arise from unexpected interactions among components and
from inconsistencies in the design and operational assumptions among the subsystems.

While the problems associated with networked computing systems may be receiving the most attention,
the difficulties associated with managing large systems have a long history. John Gall first published
Systemantics in 1975. The third edition was published in 2002 and renamed The Systems Bible [Gall 02].
While the wry humor in The Systems Bible is entertaining, the discussions should be a reminder that many
aspects of large system assembly and integration are not well understood and that the methods that were
successful for components and relatively simple systems do not necessarily scale to large systems.

Grady Booch listed some of his favorite Gall axioms in his Web log on Feb 15, 2005 [Booch 05]. Several of
those suggest the software assurance and project management issues that arise with systems and systems of
systems.

• A large system that is produced by expanding the dimensions of a smaller system does not behave like
the smaller system.

• A complex system that works is invariably found to have evolved from a simple system that worked.

Both safety and security are emergent system properties. Nancy Leveson’s discussion of the consequences
for safety analysis of that emergent behavior also applies to security [Leveson 05].

Safety is an emergent property of systems. Determining whether a plant is acceptably safe is not possible by
examining a single valve in the plant. In fact, statements about the “safety of the valve,” without information
about the context in which that valve is used, are meaningless. Conclusions can be reached, however, about
the reliability of the valve, where reliability is defined as “the ability of a system or component to perform
its required functions under stated conditions for a specified period of time,” i.e., that the behavior of the
valve will satisfy its specification over time and under given conditions. This is one of the basic distinctions
between safety and reliability: Safety can only be determined by the relationship between the valve and the
other plant components—that is, in the context of the whole. Therefore it is not possible to take a single
system component, like a software module, in isolation and assess its safety. A component that is perfectly
safe in one system may not be when used in another. Attempts to assign safety levels to software components
in isolation from a particular use, as is currently the approach in some international safety standards, is
misguided.

The vulnerabilities generated by interactions among multiple system components are much more difficult to
locate and predict than the vulnerabilities associated with a specific component or technology. The issue is
not whether a component is secure or insecure but whether that component can be securely used in a system
with specific threats. Security issues often arise with the use of commercial components. Such components

The Influence of System Properties on Software Assurance and Project Management 4
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

may need to be incorporated into a system with stronger surety requirements than those satisfied by the
individual components.

Selected Project Management Issues for Application and System Development
Security is a system property. Whereas the implementation of a specific application feature might be
contained in a single component, a security feature may require coordinated actions by multiple components
or may depend on design or coding guidelines that must be followed for all components. A well-designed
system might not depend on a single component to prevent an attack but instead would implement multiple
defenses so that the failure of a single mechanism would not expose the system to attack.

Integration introduces dependencies and feedback among components that may lead to an unintentional
system or operational error or allow a maliciously induced fault. Individual component design decisions
on how to recover from and report faults, either accidental or malicious, can lead to undesirable system
behavior. A safe shutdown from a component perspective may induce a significant system failure.

1. Risk analysis occurs at multiple levels of the system. A general system risk analysis and threat model is
an essential input into the design of the overall system software architecture. That architecture should
describe the response to the identified risks in terms of the responsibilities of the software components,
users, and operations. Risk-based testing should be applied to both components and to the system. (See
White Box Testing and Security Testing content.)

2. The design and implementation of components may generate system risks. The outcome of the
component risk analysis should be input for the periodic system risk analyses.

3. The user’s risk analysis for commercially available software may not have to consider as wide a
spectrum of threats as the analysis done by the vendor. A user’s risk analysis only has to consider how
that software is used in the specific system with the identified threats for that context.

4. Poor coordination and communications are often listed among the reasons for project failures. System
integration has to resolve any mismatches with both internal and outsourced development. One
mechanism to encourage better integration might be to specify the software assurance criteria for each
component such as completed code analysis for all delivered software. There are likely differences in
the software assurance requirements among components developed in-house and those commercially
available.

5. Systems typically have a shared infrastructure; hence, item four on the list of project management issues
for components and shared services is a critical requirement for system development.

6. The system risk assessment has to consider the functional design decisions as well as the technologies
that are used. Functional design decisions may have significant security implications. A design that
uses a central data server has very different risks than a design that is based on peer-to-peer information
sharing.

7. Just as for other aspects of the software, the early phases of development are a learning curve for the
security requirements associated with the desired functionality. Reports of possible vulnerabilities must
be treated differently from other defects, as they represent a threat to users and other stakeholders.
There will be a significant number of unknowns when the business application or supporting technology
is on the leading edge. A serious mismatch between the functional architecture and the security
requirements that is only recognized late in the development process is typically both difficult and
expensive to resolve.

8. Many quality requirements such as those for security are known only abstractly in the early life-cycle
phases. An early risk analysis might identify general threats such as insider attacks for a financial
institution. A vulnerability analysis model with more detailed attacker actions and possible responses
requires a more detailed description of the software such as that provided by the software architecture or
a detailed design. The refinement of these requirements could lead to changes in the project plan.

The Influence of System Properties on Software Assurance and Project Management 5
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

Systems to Systems of Systems
The expanding role of Web-based information exchange and technologies such as Web Services is leading
to the deployment of more systems of systems. We use Mark W. Maier’s criteria to distinguish systems of
systems from large-scale monolithic systems [Maier 96]. A system of systems characterized by

• operational independence: If the system of systems is disassembled into its component systems those
component systems must be able to effectively operate independently. The system of systems is
composed of systems which are independent and useful in their own right.

• managerial independence: The component systems not only can operate independently, they do operate
independently. The component systems are separately acquired and integrated but maintain a continuing
operational existence independent of the system of systems.

• evolutionary development: The system of systems does not appear fully formed. Its development and
existence are evolutionary with functions and purposes added.

• emergent behavior: The system performs functions and carries out purposes that do not reside in any
component system. These behaviors are emergent properties of the entire system of systems and cannot
be localized to any component system.

• geographic distribution: The geographic extent of the component systems is large. Large is a nebulous
and relative concept as communication capabilities increase, but at a minimum it means that the
components can readily exchange only information and not substantial quantities of mass or energy.

Example
An event-driven architecture is an alternative to implementing a business-to-business transaction with an
online application. In an event-driven architecture, a business transaction corresponds to an asynchronous
message sent from the buyer to a supplier. An acknowledgement or a later shipping notice would be a
message from the supplier to the seller. The arrival of such messages can be thought of as events. The
advantage of asynchronous communications is that neither party ties up computing resources waiting on a
response from the other.

Such a purchasing process represents a simple system of systems and is a good example of the differences
in design guidance between an integrated system or application and a system of systems. Both parties in the
system of systems implementation have to operate without full control and visibility of the total process.

In an IT application, authentication and authorization can be checked whenever data are accessed. For an
event-driven architecture, the authentication and authorization might be implemented by a Web Services
protocol. The message not only contains the data but must also satisfy the authorization and authentication
requirements for both parties. Encryption might be used by the sender to restrict access to the information.
Signing might be used to help in identifying the source of an order. The authentication and authorization
of an individual who submitted an order would typically have been verified on the purchaser’s system. The
message may contain information that describes the details of that authentication that could be reviewed by
the supplier.

Business to business transactions may be supported by a contractual agreement that defines the
responsibilities and liabilities of both parties. Such an agreement may impose software assurance
requirements on both parties.

Some Project Management Issues for Application and System Development
1. The threats for any single system in a system of systems are propagated to the other participants.

2. Whereas prevention is a frequent response to a component or application risk, a system participating
in a system of systems cannot control how the risks are mitigated by the other systems. There will be
a greater spectrum of errors, and it is difficult to distinguish malicious errors from normal operational
errors. The architect for a participant in a system of systems now has to demonstrate software assurance
for that system’s behavior in the context of the system of systems faults.

The Influence of System Properties on Software Assurance and Project Management 6
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

3. Many of the design guidelines that support component or application development should be carefully
revised for a system of systems. The analysis of a system used in a system of systems is done with
incomplete information about the other participants. The design of a system-of-systems interface has to
reflect the complexity of error handling in that context.

4. Static analysis is often effective for a component or application, but the analysis of a system of
systems can depend more on run-time analysis of behavior because of the limited knowledge of
other participants. The difficulty of analysis is compounded by the evolutionary nature of a system of
systems.

Influence of System Properties on Resources

Estimates
Shared infrastructure can reduce component development costs, but those shared services typically aggregate
risks. Estimates should reflect the increased assurance that be applied to the shared services.

Systems and systems of systems can raise havoc with estimates. As noted by Leveson, it is very difficult to
identify vulnerabilities that arise from the integration of components or systems [Leveson 05]. Unanticipated
behavior can appear during integration testing, and the resolution of such problems may require component
or architectural changes. Systems of systems requirements typically increase the costs for the development of
a participating system. The implementation of dynamic (run-time) analyses of system-of-systems interfaces
and the system’s response to adverse system-of-systems events is more expensive than the static analyses
and preventive measures frequently used for an integrated system or application.

Facilities and Staffing
The development context—component, system, or system of systems—also influences the skills required.
An analysis of the emergent behavior of a system or system of systems is quite different from the
vulnerability analysis of a component. The assurance of a system and system of systems likely requires the
assurance of any shared infrastructure services. A risk assessment requires experience with risk analysis and
with applying it in the corresponding development context.

Other Related Estimates Such as Size and Defects
A number of Gall’s axioms suggest the difficulties with estimating defects with large systems [Gall 02].

• Any large system is going to be operating most of the time in failure mode.

• The mode of failure of a complex system cannot ordinarily be determined from its structure.

• One does not know all the expected effects of known bugs.

Vulnerabilities arise as we put the pieces together. The sources of potential errors now include

• specific interface: An interface controls access to a service. Interfaces that fail to validate the input
stream are frequent members of published vulnerability lists.

• component-specific integration: Assembly problems often arise because of conflicts in the design
assumptions for the components. Project constraints may require using components, COTS software,
or legacy systems that were not designed for the operating environment, which raises the likelihood of
mismatches. The increasing importance of business integration requirements compounds the component
integration problems.

• architecture integration mechanisms: Commercial software tool vendors often provide the capability
for the purchaser to integrate the tool into their systems and tailor its functionality for their specific
needs. However, the capability to reconfigure a system rapidly is matched by the increased probability
of component inconsistencies generated by the more frequently changing component base, as well
as the increased risk that the dynamic integration mechanisms could be misused or exploited. These
mechanisms represent another interface that must be properly constrained.

The Influence of System Properties on Software Assurance and Project Management 7
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

• system behavior — component interactions: The behavior of a system is not the simple sum of the
behavior of the individual components. System behavior is strongly influenced by the interactions of
its components. Components may individually meet all specifications, but when they are composed
into a system the unanticipated feedback among components can lead to unacceptable system behavior.
Security and safety are system rather than component requirements. We can build a reliable system
out of unreliable components by appropriate use of redundancy. Components that are not secure as
standalone components in an operating environment may be secure when used within the constraints
maintained by a system.

Each source of errors requires its own analysis. (See the Assembly, Integration & Evolution84 content area
for more detail.) The errors associated with system behavior challenge the traditional approach to failure
analysis. The assumption for almost all causal analysis for engineered systems today is a model of accidents
that assumes they result from a chain (or tree) of failure events and human errors. From an observed error,
the analysis backward chains and eventually stops at an event that is designated as the cause [Leveson 05].

Event-based models of accidents, with their relatively simple cause-effect links, were created in an era of
mechanical systems and then adapted for electro-mechanical systems. The use of software in engineered
systems has removed many of the physical constraints that limit complexity and has allowed engineers to
incorporate greatly increased complexity and coupling in systems containing large numbers of dynamically
interacting components. In the simpler systems of the past, where all the interactions between components
could be predicted and handled, component failure was the primary cause of accidents. In today’s complex
systems, made possible by the use of software, this is no longer the case. The same applies to security
and other system properties: While some vulnerabilities may be related to a single component only, a
more interesting class of vulnerability emerges in the interactions among multiple system components.
Vulnerabilities of this type are system vulnerabilities and are much more difficult to locate and predict
[Leveson 05].

Bibliography

[Booch 05] Booch, Grady. Architecture Web Log. http://
www.booch.com/architecture/blog.jsp (2005).

[Gall 02] Gall, John. The Systems Bible. Walker, MN: The
General Systemmantics Press, 2002.

[Leveson 05] Leveson, Nancy. “A Systems-Theoretic Approach
to Safety in Software-Intensive Systems.” IEEE
Transactions on Dependable and Secure Computing
1, 1 (January-March 2004): 66-86.

[Lipner 05] Lipner, Steve & Howard, Michael. The Trustworthy
Computing Security Development Lifecycle. http://
msdn.microsoft.com/library/default.asp?url=/library/
en-us/dnsecure/html/sdl.asp (March 2005).

[Maier 96] Maier, Mark W. Architecting Principles for Systems-
of-Systems. http://www.infoed.com/Open/PAPERS/
systems.htm (1996).

Carnegie Mellon Copyright
Copyright © Carnegie Mellon University 2005-2010.

84. http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/assembly.html (Assembly, Integration, and Evolution)

http://buildsecurityin.us-cert.gov/bsi/articles/best-practices/assembly.html
http://www.infoed.com/Open/PAPERS/systems.htm
http://www.infoed.com/Open/PAPERS/systems.htm

The Influence of System Properties on Software Assurance and Project Management 8
ID: 228-BSI | Version: 5 | Date: 5/16/08 2:38:39 PM

This material may be reproduced in its entirety, without modification, and freely distributed in written or
electronic form without requesting formal permission. Permission is required for any other use. Requests

for permission should be directed to the Software Engineering Institute at permission@sei.cmu.edu1.

The Build Security In (BSI) portal is sponsored by the U.S. Department of Homeland Security (DHS),
National Cyber Security Division. The Software Engineering Institute (SEI) develops and operates BSI. DHS
funding supports the publishing of all site content.

NO WARRANTY

THIS MATERIAL OF CARNEGIE MELLON UNIVERSITY AND ITS SOFTWARE ENGINEERING
INSTITUTE IS FURNISHED ON AN “AS-IS" BASIS. CARNEGIE MELLON UNIVERSITY
MAKES NO WARRANTIES OF ANY KIND, EITHER EXPRESSED OR IMPLIED, AS TO ANY
MATTER INCLUDING, BUT NOT LIMITED TO, WARRANTY OF FITNESS FOR PURPOSE OR
MERCHANTABILITY, EXCLUSIVITY, OR RESULTS OBTAINED FROM USE OF THE MATERIAL.
CARNEGIE MELLON UNIVERSITY DOES NOT MAKE ANY WARRANTY OF ANY KIND WITH
RESPECT TO FREEDOM FROM PATENT, TRADEMARK, OR COPYRIGHT INFRINGEMENT.

1. mailto:permission@sei.cmu.edu

mailto:permission@sei.cmu.edu

